
Statistical Learning for File-Type Identification
Siddharth Gopal1

sgopal1@cs.cmu.edu
Yiming Yang1

yiming@cs.cmu.edu
Konstantin Salomatin1
ksalomat@cs.cmu.edu

Jaime Carbonell1
jgc@cs.cmu.edu

Abstract—File-type Identification (FTI) is an important problem
in digital forensics, intrusion detection, and other related fields.
Using state-of-the-art classification techniques to solve FTI
problems has begun to receive research attention; however,
general conclusions have not been reached due to the lack of
thorough evaluations for method comparison. This paper
presents a systematic investigation of the problem, algorithmic
solutions and an evaluation methodology. Our focus is on
performance comparison of statistical classifiers (e.g. SVM and
kNN) and knowledge-based approaches, especially COTS
(Commercial Off-The-Shelf) solutions which currently dominate
FTI applications. We analyze the robustness of different methods
in handling damaged files and file segments. We propose two
alternative criteria in measuring performance: 1) treating file-
name extensions as the true labels, and 2) treating the predictions
by knowledge based approaches on intact files as true labels;
these rely on signature bytes as the true labels (and removing
these signature bytes before testing each method). In our
experiments with simulated damages in files, SVM and kNN
substantially outperform all the COTS solutions we tested,
improving classification accuracy very substantially – some
COTS methods cannot identify damaged files at all.

Keywords-Digital Forensics, File-type Identification,
Classification, Comparative Evaluation

I. INTRODUCTION
File-type Identification (FTI) is the task of assigning a pre-

defined label (the file type) to each instance (each file) based
on observed data in the file. The conventional application of
FTI is in operating systems where computers need to choose
different programs to process the information based on the type
of each file. Algorithmic solutions are needed for automated
identification because systems cannot always rely on human-
assigned extension in file names; users occasionally choose a
wrong extension when creating a file name, or simply forget to
specify it. A variety of Commercial Off-The-Shelf (COTS)
software has been developed for automated FTI. For example,
Libmagic [8] is open-source software in Linux for FTI (the
‘file’ command). Other popular COTS software includes TrID
[22], Outside-In [21], DROID [20], and so on.

In the past decade, FTI has become an increasingly
important area in digital forensics research where the focus is
on extracting and analyzing useful information from digital
devices such as mobile phones, computer hard disks and CD-
ROMs. Forensic practitioners often encounter broken CD-
ROMs, damaged hard-disks, or partially deleted files. They are
frustrated with the limitations of COTS solutions whose
predictions are essentially based on the detection of signature
bytes in each file, and the detection relies on a manually
created database of mappings (rules) from signature bytes to
file-types. For example, a Microsoft Windows bitmap file is
typically matched with the signature string ‘BM’; a JPEG file
is matched with the two-byte signature ‘0xFF, 0xD8‘. If the

signature bytes or the allocation information of the file
segments are missing or garbled, COTS solutions will work
poorly if at all (see Section 5 for empirical evidence).

Other application areas where automated FTI has become
important include intrusion detection [9], virus removal,
firewall protection [30], etc. For example, in intrusion
detection, individual packets are monitored; if any offending
file-type of data is detected, those data will be filtered out. In
another example, firewalls are often setup to detect executable
files from unknown sources; if such files are detected, they will
be blocked. In such scenarios, the location of signature bytes
and the allocation information about file segments are often not
available. COTS solutions or similar knowledge-engineering
approaches to FTI would perform poorly.

Several statistical classification methods have been studied
to address the limitations of COTS solutions or knowledge-
engineering based approaches. Those methods treat each file
type as a category (class), and use supervised learning
techniques to predict the category label for each test instance (a
file) based on its content and a training set of labeled instances.
Such approaches are referred to as content-based, in distinction
from those relying on file-name extensions or file-header
information alone. Each file is represented using a vector of
feature weights where the features are typically n-gram bytes,
the weights are typically the within-file frequency of the
features [18] or some kind of TF-IDF (term frequency
multiplied to Inverted Document Frequency) weight (see
Section 2). Just like in text categorization where word order is
typically ignored by statistical classifiers, the order of ngram
bytes is also often ignored by the classifiers in FTI. Of course
by tuning the value of n for n-gram features, local context can
be partially captured. Once we have files represented as feature
vectors, any statistical classification method can in principle be
applied. Approaches examined so far include centroid-based
methods [12],[15],[16], [17], [18], [19] where each category is
represented using the centroid of its member instances in the
training set, and the category centroids are compared to each
test instance for inference. Other methods include 1-Nearest
Neighbor (1-NN) [17], k-Nearest Neighbor (kNN) [2], 3-layer
neural networks (with PCA-induced features) [4] Support
Vector Machines (SVM), etc. [2].

Although good progress has been made in statistical
approaches to FTI, general conclusions are difficult to obtain
with respect to the strengths and weaknesses of different
methods, and it is not clear which ones are representative for
the current state of the art.

1. The lack of evaluation results on shared benchmark
datasets: All the published results so far were obtained on
unshared datasets, making it impossible to directly
compare methods across studies or to replicate published
results. A realistic data collection, called Realistic Data
Corpus (RealisticDC) [10], has been recently made

This work is supported by the Digital Intelligence and Investigation
Directorate (DiiD) of CERT in the Software Engineering Institute, CMU

1Carnegie Mellon University

2011 10th International Conference on Machine Learning and Applications

978-0-7695-4607-0/11 $26.00 © 2011 IEEE

DOI 10.1109/ICMLA.2011.135

68

publicly available; however, no evaluation result of any
method has yet been reported on that collection.

2. The lack of well-established evaluation methodology:
To our knowledge, no evaluation result was published for
performance comparison against and among COTS
solutions. Although COTS predictions are all based on
signature bytes which can be found in a manually created
external data base, different software may produce
different labels for the same file type, or they may divide
file types into sub-types inconsistently Comparing COTS
solutions has been difficult due to the lack of
standardization of file-type (category) labels. On the other
hand, the evaluations of statistical classifiers for FTI often
use file-name extensions as the true labels, which is
contradictory to the common belief that user assigned
extensions in file names are highly unreliable [12]. This
contradiction makes it difficult to interpret the reported
evaluation results for statistical classifiers in FTI.

3. No cross-method comparative evaluation has been
reported on damaged files. This is the most crucial issue
for the security and forensic applications mentioned above.
The claimed advantage of statistical classification
approaches over COTS or knowledge based solutions has
not been empirically examined using any quantitative
measure. As a result, software developers and forensic
examiners cannot tell which tools would be best for their
problems, and researchers in FTI-related fields also face
difficulties in reaching conclusions regarding the state of
the art.

This paper addresses the above key issues by conducting a
thorough investigation with several representative statistical
classifiers and COTS solutions, as follows:

1. We report the first comparative evaluation using controlled
experiments with statistical classification methods
(Support Vector Machines and k-Nearest Neighbor
classifiers) and popular COTS solutions (Libmagic, TrID,
Outside-In and DROID) on a shared and publicly available
ReasliticDC dataset.

2. We propose two strategies for cross-method evaluation.
The first is to use the labels assigned by a COTS solution
(e.g. Libmagic) on the intact files as the true labels of test
instances, and to measure the accuracy of statistical
classifiers in predicting file types accordingly. The second
is to use file name extensions as the true labels, and to
measure the consistency in label assignment by each
COTS solution accordingly. The former (accuracy) allows
us to compare statistical classifiers conditioned on the
choice of software for information extraction (as the next
step after file type identification). The latter (consistence)
allows us to compare different COTS solutions without
subjective unification of software-specific labels.

3. We use the Realistic Data Corpus (RealisticDC) as the test
bed, which is recently made publicly available by
Garfinkel et al [10] for digital forensics research, and we
provide the first set of empirical results on this corpus. By
making our detailed documentation and data preparation

toolkit together accessible, we ensure that future results on
this dataset can be compared with ours.

4. Our experiments focus on performance analysis of
different methods over incomplete files (using files with
simulated damages and file segments) as well as complete
files; the latter has been the setting in all previous
evaluations. Incomplete files are particularly prevalent in
forensics. We found SVM and kNN outperforming
Libmagic (among the best of COTS solutions) by a factor
of 10 in microaveraged F1 , and by a factor of 7.3 to 8.0 in
macro-averaged F1 (Sections 3.2 and 5).

5. Our experiments also show that with adequate choice of n
in n-gram feature generation and statistical feature
selection, SVM (and kNN) can scale very well to large
applications without any (significant) sacrifice in accuracy.

The rest of the paper is organized as follows. Section 2
outlines our statistical learning framework for classification
and the feature generation process. Section 3 discusses our
evaluation methodology. Section 4 describes the experiments
and data. Section 5 reports our results. Section 6 concludes by
summarizing our findings.

II. THE STATISTICAL APPROACH
In order to apply statistical classification methods to FTI, we
need a set of features to represent files and to discriminate
different types from each other. N-gram bytes have been
found highly useful for FTI in previous work 0[15][19] hence
we follow the same choice of features. Given a collection of
files, the feature space is defined as the union of all the unique
n-gram bytes in the files. Each file is represented as a vector of
feature weights. Within-file frequency of n-gram bytes is a
common choice of feature weighting scheme. It is analogous
to the term frequency (TF) in document retrieval and text
categorization; hence we call it TF weight for convenience.
Other popular term-weighting schemes are also possible, such
as TF-IDF weights where IDF stands for the Inverted
Document Frequency of a term in a collection of documents.
Applied to FTI, a ‘document’ means a file, and a ‘term’ means
an n-gram byte.
Notice that the value of ‘n’ need to be carefully chosen for
both classification accuracy and for classifier training and run-
time efficiency. Generally, the larger the value of ‘n’, the more
byte order information is captured by the features. That is, the
features could be more discriminative for classification.
However, a higher value of ‘n’ also means a larger size of the
feature space (growing exponentially in n), which will cause
an increased time to train the model and a risk of overfitting
the training data. Adequate choice of n can found empirically
through cross-validation, i.e., using some held-out data (not a
part of the test set) to tune the value of n and then fix the value
in the testing phase.
Having the vector representation of files and discriminative
features, any classification method could be in principle
applied. We use two of the most popular methods in this
study: Support Vector Machines (SVM) and k-Nearest
Neighbors (kNN). Both methods have been highly successful

69

in a broad range of classification applications [14][25][5][27].
SVM is formulated as a large-margin method for a geometric
classification problem: the objective is to find the decision
surface that best separates two classes of data points (vectors)
with the maximal margin in between. SVM has been found
robust in high-dimensional feature spaces and with skewed
class distributions where many classes have a relative small
number of labeled instances for training. kNN is radically
different: it is typical among instance-based (‘lazy’) learning
methods. It finds the nearest neighbors for each test instance in
the training set on the fly, and makes inference based on the
class labels in the local neighborhood. Specifically, our kNN
uses the cosine similarity as the metric to select the top-k
training instances for each test instance, and to weight the
class label of each nearest neighbor; the weights of labels are
summed over for each class, and the class receives the highest
score is assigned to the test instance. This kind of kNN is
called multi-class kNN [5],[27], meaning that the unique class
labels in each local neighborhood may be more than two.
Multi-class kNN typically outperforms two-class kNN in
multi-class or multi-label classification problems; the latter
converts multi-class labels of training instances into binary
labels for each class before training a two-way classifier for
the class.

III. EVALUATION METHODOLOGY
It has been more difficult to obtain the true labels of files

for FTI evaluations, compared to some other domains such as
text categorization or image pattern recognition where human-
assigned labels to documents or objects can be directly used as
the true labels for evaluation. In FTI, extensions in file names
are potentially incorrect or even missing -- that is why COTS
solutions have been developed for automated FTI. This leads to
two open questions regarding the evaluation methodology in
FTI.

1) How can we get the true labels for evaluation, especially
for comparing different statistical classifiers in FTI?

2) File-name extensions are imperfect, but are they still
useful for cross-method comparison, especially among
different COTS solutions and between COTS and statistical
classifiers?

Our answer for the first question is to use the output of a
COTS solution on intact files as the true labels, and to compare
the performance of different statistical classifiers on damaged
or fragmented files based on those true labels. By using an
application-specific choice of COTS solution to produce the
true labels, we avoid the need for manual and subjective
unification of inconsistent labels from different COTS
solutions for the same file. For example, given an excel file
(possibly incomplete or damaged) as the input, some COTS
solution would label it as ‘Microsoft Excel 2000’ and others
would label it as ‘Microsoft Office Document’ or ‘Microsoft
Excel File’. These labels follow different naming conventions,
and/or provide different levels of detail about the file type. We
cannot subjectively decide that one convention is better than
the others, or a certain level of detail is most appropriate in
general. What level of detail is appropriate depends on the

next-step application, e.g., on the choice of program to be used
for information extraction or execution after FTI. Hence, if the
output labels of a COTS solution are suitable for the next-step
application, it is sensible to use those labels as the ground truth
for evaluating statistical classifiers in file-type identification.

Our answer for the second question is yes. We believe that
using file extensions as the true labels to evaluate COTS
solutions is informative. It is reasonable to assume that file
extensions are more often to be correct than incorrect. If the
predicted labels by one method agree with file extensions in a
large test set more often than another method does, then the
chance for the former method to outperform the latter method
is higher. Using noisy labels to evaluate the relative
performance of FTI methods to each other is still informative,
as long as the test set is sufficiently large.

For evaluations, we choose to use micro-averaged F1 and
macro-averaged F1 as the primary metrics. Both are standard
and common in benchmark evaluations [26][27][28] for text
categorization, information filtering, information extraction,
and so on. We omit the descriptions of these metrics due to the
lack of space. A thorough description of the metrics can be
found in [28].

IV. EXPERIMENTS

A. Data
The RealisticDC dataset was introduced by Garfinkel et al

[10] to alleviate the problem of lack of a standardized dataset
for FTC research. The dataset was created under realistic
situations that mimic the kind of data commonly encountered
by forensics investigators. An experimenter was hired to play
the role of a normal computer user, exchanging messages,
browsing the web, performing office related work, reading
news etc. The images of the experimenter‘s computer disk then
were processed and made available as the dataset. By hiring
individuals to mimic realistic users instead of directly
collecting data from true users, privacy issues were avoided,
making the data sharable to the research community. After
performing our own filtering, such as removing empty files and
files without extensions, we obtained a total of 31,644 files and
316 unique file-type extensions, among which 213 are binary
file-types and 103 are ASCII text file-types. This filtered
dataset has the size of 7.2 GB in total. Further details of the
filtering process can be found at http://nyc.lti.cs.cmu.edu/clair/
datasets.htm.

B. Methods for Comparison
For cross-method comparison we include both state-of-the-

art classifiers and popular COTS solutions. We list these
methods with a corresponding brief description.

1. SVM is a state-of-the-art classification method we
described in Section 2. Specifically, we used the large-
scale linear SVM implementation by Hsieh et al [13] in
our experiments.

2. kNN is another state-of-the-art classification method we
described in Section 2. We used our own implementation
of kNN [27] in the experiments.

70

3. Libmagic [8] is one of the most popular COTS solutions
for FTI, which has been implemented as a UNIX
command line tool. It uses the information about the
UNIX/Linux system to recognize certain file types (such
as device files) as the first step; if the first attempt fails,
then it analyzes the signature bytes of the input file to
identify the file-type as the second step; if the second
attempt also fails, then the ASCII content within the file is
used to identify the file-type. If all the above attempts fail,
the file-type will be labeled as not recognized.

4. TrID [22] is another popular COTS solution designed for
identifying file-types from their signature bytes. TrID uses
a database of signature patterns. Currently TrID supports
the identification of 4093 different file-types.

5. Outside-In [21] is a part of the suite of algorithms
distributed by Oracle for dealing with unstructured files. It
uses a proprietary algorithm to identify the file-types
without entirely relying on the file-extensions. It can
identify more than 500 file-types.

6. DROID (Digital Record Object Identification) [20] is an
opensource file-type identification tool developed by the
National Archives. Rather than relying on signature bytes
only, DROID uses regular expressions to allow flexible
match in signature-based file-type identification.

For comparing the methods on intact files, we used file-
name extensions as the true labels of the test instances. For
comparing the methods on damaged files or segments of files,
we used the output of Libmagic on the undamaged and un-
segmented version of the files as the true labels of the test
instances. For these experiments, we used the subset of the
dataset (30,254 files) on which libmagic was able to predict the
file-types. We also investigated other signature-based COTS
methods on intact files as the gold-standard, but we omit these
variations for brevity, since they provide the same basic
insight.

C. Simulated Damages and Segments
We simulate file damage in our experiments as follows:

Type-0 corresponds to the case where there is no damage.
It reflects an ideal situation where the files are intact without
any missing bytes. Also, complete information about file
segment allocation is available so that we can treat each file as
a contiguous string of bytes after preprocessing.

Type-1 corresponds to the case where the signature bytes in
the file are missing. Generally a hard disk is arranged in the
form of blocks (clusters) where each block is a contiguous
sequence of 512 bytes, and each file is stored across different
blocks. The signature bytes of a file are typically stored in the
first block assigned to the file. Thus, if the first block is
damaged, the signature bytes of the file are lost. In order the
mimic such a situation, we removed the first block from each
file, that is, the first 512 bytes of the file.

Type-2 corresponds to the case where additional bytes
(after the removal of signature bytes) are missing at random
locations, i.e., the missing bytes are randomly allocated. We
conducted experiments with the random removal of bytes at
10%, 20%, …, 90% of each file in the test set.

Type3 corresponds to the case where files are stored as
isolated segments instead of a contiguous segment. In order to
mimic such a scenario, we divided the files into shorter
segments of specific sizes and conducted experiments using the
segments for training as well as testing. Sometimes, in practice
it might not be easy to know the distribution of segments nor
their labels, so it would be difficult to generate a labeled
training dataset. In such cases, the alternative strategy would be
use systems which are trained on complete (un-segmented)
files. In our experiments for evaluating performance on file
segment classification, we perform both the types of training,
i.e., training on segments and training on complete files,
respectively.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Micro-F1 Macro-F1

FTI Methods on intact files
(evaluated using file extensions as true labels)

DROID TrID Outside-In Libmagic kNN-1-gram Svm-2-gram

Figure 1: Performance of FTI methods on intact files: File
extensions were used as the true labels in the evaluations

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Micro-F1 Macro-F1

FTI Methods on damaged files
(evaluated using file extensions as true labels)

DROID TrID Outside-In Libmagic kNN-1-gram Svm-2-gram

Figure 2: Performance of FTI methods on files with type-1
damages (missing signature bytes): File extensions were used as
the true labels in the evaluation.

71

Figure 4: Performance of FTI methods on files with type-1 damage
(signature bytes are missing): The output of Libmagic was used as
the true labels

D. Detailed Experimental Setting
Our results for SVM and kNN are obtained through a five-

fold cross validation process. We divided the full data into five
subsets: four out of the five subsets were used for training and
validation (parameter tuning), and the remaining subset was
used for testing. We repeated this process five times, with a
different non-overlapping subset for testing each time; the
results were averaged over the five subsets. In SVM we tuned
the regularization parameter and in kNN we tuned the number
(k) of the nearest neighbors. We tried 5 different values for the
SVM regularization parameter, from .01 to 100; and, we tried
10 different values for k in kNN, from 1 to 50. As for feature
weighting in both SVM and kNN, we used a conventional TF-
IDF weighting scheme named ‘ltc’ in information retrieval and
text categorization [28]. We also varied the value of n in the
generation of n-gram features, with n = 1, 2 and 3. COTS
methods have neither a training phase, nor any parameter
tuning, since they are not based on statistical learning.

V. RESULTS
Figure 1 shows the performance of all the methods on intact

files, including both COTS solutions and the statistical
classifiers on complete undamaged files. File extensions were
used as the true labels. During validation, we found kNN with
1-gram features worked better than kNN with 2-gram features,
and SVM with 2- gram features worked better than SVM with
1-gram in terms of classification performance, thus we
included the better versions of kNN and SVM in the graph. In
micro-averaged F1, Libmagic is the best method among the
COTS solutions; however, in macroaveraged F1 , TrID is the
best among COTS solutions. In both measures, SVM and kNN
are substantially better than all the COTS solutions being
tested. This means that statistical classifiers are more
discriminative with respect to user-specified file types in file-
name extensions. The larger performance improvement in
macro-averaged F1 by the statistical classifiers over COTS,
compared to the smaller improvements in micro-averaged F1,
indicates that COTS predictions tend to agree more with file
extensions for common file types, and agree less with file

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Micro-F1 Macro-F1

FTI Methods on files with type-1 damage:
Libmagic output was used as true labels

Libmagic knn-1-gram knn-2-gram svm-2-gram

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Micro-F1 Macro-F1

FTI Methods on intact files:
Libmagic output was used as the true labels

Libmagic knn-1-gram knn-2-gram svm-2-gram
Figure 3: Performance of FTI methods on intact files: The output
of Libmagic was used as the true labels.

Figure 5: Performance curves of statistical classifiers on files with
type-2 damages: The output of Libmagic was used as true labels Figure 6: Performance curves of SVM (2-gram) in fragment-

based FTI: the output of Libmagic was used as the labels.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Statistical classifiers on files with type-2 damage

kNN-1-gram Micro-F1 kNN-1-gram Macro-F1
SVM-2-gram Micro-F1 SVM-2-gram Macro-F1

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

256 512 1024 2048 4096 8192 16384 Full file
Fragment Size

SVM (2-gram) in Fragment-based FTI

Train on Fragments-MicroF1 Train on Fragments-Macro-F1
Train on Full Files-Micro-F1 Train on Full Files-Macro-F1

72

extensions for rare file types. Figure 2 shows the performance
of all the methods on files with type-1 damages, i.e., when the
signature bytes of each test instance are missing. Again, file
extensions were used as the true labels in this evaluation.
Comparing to Figure 1, we can see that most COTS solutions
failed miserably (with the zero or near-zero value in both
micro-averaged and macro-averaged F1) when the signature
bytes are missing, while the statistical classifiers suffer much
less. The statistical classifiers are much more robust in FTI
with respect to this kind of damage.

Figure 3 compares the results of our statistical classifiers on
intact files; the output of Libmagic for each test file was used
as the true label of that file. We include the performance of
Libmagic for reference, which has the perfect score (F1 =1) of
course. We include the results of SVM and kNN with 1-gram
and 2-gram features, respectively.

Figure 4 compared the results of these methods on files
with type-1 damages, i.e., when the first 512 bytes (including
the signature bytes) of each test file is missing. Libmagic failed
dramatically in this case, while SVM and kNN are highly
robust. SVM using 2-gram features works better than SVM
using 1-gram features, on the other hand, kNN using 1-gram
features had better results than kNN using 2-gram features.
SVM and kNN have a comparable performance. In general, the
statistical learning methods perform better in micro-averaged
F1 because the common classes have more training instances.
SVM (2-gram) outperforms Libmagic by a factor of 10.3
(0.900 vs. 0.088) in micro-averaged F1 and a factor of 8.0
(0.540 vs. 0.068) in macro-averaged F1 .KNN (1-gram)
outperforms Libmagic by a factor of 10.0 (0.874 vs. 0.088) in
micro-averaged F1 and a factor of 7.3 (0.496 vs. 0.068) in
macro-averaged F1 . Figure 5 compares the performance curves
for SVM (using 2- gram features) and kNN (using 1-gram
features) on files with type- 2 damages. A certain percentage of
each file was removed at random, as well as the first 512 bytes
from each file. Again, the two methods have similar curves:
until the damaged proportion reaches 50% or higher, there is
no significant degradation in classification performance for
both methods, but kNN is somewhat more robust when most of
the file is missing. Figure 6 compares the performance curves
for SVM (using 2- gram features) on segments of files (type-3
damage). We evaluated the methods with two settings: training
SVM on segments (of the same size as the test segments), and
training SVM on the full files. The former setting yielded a
better performance but it had an unrealistic assumption, i.e., the
size of the segments in the test set must be known or estimated
in advance. The latter setting is more realistic. All the curves
show that the smaller the segments harder the prediction task.

VI. CONCLUSION
We conducted the first thorough comparative analysis of

FTI methods on damaged or fragmentary files, contrasting
COTS methods and statistical learning ones (SVM and kNN).
The study found statistical learning methods to be far more
robust than COTS in all the measures. SVM and kNN
outperform COTS when the gold standard is set of available
file extension for intact files. More importantly, SVM and kNN
far outperform COTS on different types of simulated file
damages: files with missing signature bytes, files with

randomly deleted sections, and isolated file segments. These
tests were conducted on a new realistic publicly available data
set, encouraging future research and rigorous evaluations.

VII. REFERENCES
[1] Ahmed, I., Lhee, K., Shin,H. and Hong, M.P 2009.. (ACISP), 44-59.
[2] Ahmed, I. and Lhee, K. and Shin, H. and Hong, M.P. 2010. Fast file-

type identification.SAC, 1601-1602.
[3] Ahmed, I., Lhee, K., Shin,H. and Hong, M.P. 2010. Fast Content-based

File-type Identification. IFIP WG ICDF.
[4] Amirani, M.C , Toorani, M., and Beheshti Shirazi, A.A.B. 2008. A New

Approach to Content-based File Type identification. (ISCC), 1103-1108.
[5] Belur, V. D. 1991. Nearest Neighbor (NN) Norms: NN Pattern

Classification Techniques. McGraw-Hill Computer Science Series.
[6] Calhoun, W.C. and Coles, D. 2008. Predicting types of file fragments.

Digital Investigation, S14-S20.
[7] Cheng, W. and Hüllermeier, E. 2009. Combining instance-based

learning and logistic regression for multilabel classification, Machine
Learnig,211-225.

[8] Darwin, I.F. 2008. Libmagic. ftp://ftp.astron.com/pub/file/
[9] Dreger, H. , Feldmann, A., Mai, M. ,Paxson, V. and Sommer, R. 2006.

Dynamic application-layer protocol analysis for network intrusion
detection. USENIX Security Symposium

[10] Garfinkel, S., Farrell, P., Roussev, V. and Dinolt, G. 2009. Bringing
science to digital forensics with standardized forensic corpora. DFRWS ,
S2-S11.

[11] Guyon, I. and Elisseeff, A. 2003. An introduction to variable and feature
selection. The Journal of Machine Learning Research, 1157-1182.

[12] Hall A.G and Davis W.P, Sliding Window Measurement for File Type
Identification

[13] Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S. and Sundararajan, S.
2008. A dual coordinate descent for large-scale linear SVM. ICML

[14] Joachims, T. 1998. Text categorization with support vector machines:
Learning with many relevant features. ECML, 137-142.

[15] Karresand, M. and Shahmehri, N. 2006. Oscar—file type identification
of binary data in disk clusters and RAM pages. SPDE, 413-424.

[16] Karresand, M. and Shahmehri, N. 2006. File type identification of data
fragments by their binary structure. IWIA; 140–147.

[17] Li, W.J.,Wang, K. and Stolfo, S.J. and Herzog, B. 2005 Fileprints:
identifying filetypes by n-gram analysis. IWIA,64-71.

[18] McDaniel, M. 2001. Automatic File Type Detection Algorithm, Masters
Thesis, James Madison University.

[19] McDaniel, M. and Heydari, M.H. 2003. Content based file type
detection algorithms. HICSS, Track 9., 332a.

[20] National Archives of United Kingdom. 2003. DROID -
http://droid.sourceforge.net/

[21] Oracle Outside In Technology. http://www.oracle.com/us/products/
middleware/content-management/outside-in-tech/index.html

[22] Pontello, M. TrID – File Identifier. http://mark0.net/soft-trid-e.html
[23] Roussev, V. and Garfinkel, S.L. 2009. File Fragment Classification-The

Case for Specialized Approaches. SADFE, 3-14.
[24] Mitchell, T. 1997. Machine Learning, McGraw Hill.
[25] V. Vapnik, 2005. The nature of statistical learning theory, Springer

verlag, New York
[26] Van Rijsbergen, C. 1979. Information Retrieval..Butterworths, London.
[27] Yang, Y. 1994. Expert Network: Effective and Efficient Learning from

Human Decisions in Text Categorization and Retrieval. ACM SIGIR,
pages 13-22.

[28] Yang, Y. 1999. An Evaluation of Statistical Approaches to Text
categorization. Information Retrieval, 1386-4564.

[29] Yang, Y. and Pedersen, J.O. 1997. A comparative study on feature
selection in text categorization, ICML, 412-420.

[30] Yoo, I.S. and Ultes-Nitsche, U. 2003. Adaptive detection of
worms/viruses in firewalls. ICCNIS.

73

