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Abstract—File-type Identification (FTI) is an important problem 
in digital forensics, intrusion detection, and other related fields. 
Using state-of-the-art classification techniques to solve FTI 
problems has begun to receive research attention; however, 
general conclusions have not been reached due to the lack of 
thorough evaluations for method comparison. This paper 
presents a systematic investigation of the problem, algorithmic 
solutions and an evaluation methodology. Our focus is on 
performance comparison of statistical classifiers (e.g. SVM and 
kNN) and knowledge-based approaches, especially COTS 
(Commercial Off-The-Shelf) solutions which currently dominate 
FTI applications. We analyze the robustness of different methods 
in handling damaged files and file segments. We propose two 
alternative criteria in measuring performance: 1) treating file-
name extensions as the true labels, and 2) treating the predictions 
by knowledge based approaches on intact files as true labels; 
these rely on signature bytes as the true labels (and removing 
these signature bytes before testing each method). In our 
experiments with simulated damages in files, SVM and kNN 
substantially outperform all the COTS solutions we tested, 
improving classification accuracy very substantially – some 
COTS methods cannot identify damaged files at all. 

Keywords-Digital Forensics, File-type Identification, 
Classification, Comparative Evaluation 

I.  INTRODUCTION 
File-type Identification (FTI) is the task of assigning a pre-

defined label (the file type) to each instance (each file) based 
on observed data in the file. The conventional application of 
FTI is in operating systems where computers need to choose 
different programs to process the information based on the type 
of each file. Algorithmic solutions are needed for automated 
identification because systems cannot always rely on human-
assigned extension in file names; users occasionally choose a 
wrong extension when creating a file name, or simply forget to 
specify it. A variety of Commercial Off-The-Shelf (COTS) 
software has been developed for automated FTI. For example, 
Libmagic [8] is open-source software in Linux for FTI (the 
‘file’ command). Other popular COTS software includes TrID 
[22], Outside-In [21], DROID [20], and so on. 

In the past decade, FTI has become an increasingly 
important area in digital forensics research where the focus is 
on extracting and analyzing useful information from digital 
devices such as mobile phones, computer hard disks and CD-
ROMs. Forensic practitioners often encounter broken CD-
ROMs, damaged hard-disks, or partially deleted files. They are 
frustrated with the limitations of COTS solutions whose 
predictions are essentially based on the detection of signature 
bytes in each file, and the detection relies on a manually 
created database of mappings (rules) from signature bytes to 
file-types. For example, a Microsoft Windows bitmap file is 
typically matched with the signature string ‘BM’; a JPEG file 
is matched with the two-byte signature ‘0xFF, 0xD8‘. If the 

signature bytes or the allocation information of the file 
segments are missing or garbled, COTS solutions will work 
poorly if at all (see Section 5 for empirical evidence). 

Other application areas where automated FTI has become 
important include intrusion detection [9], virus removal, 
firewall protection [30], etc. For example, in intrusion 
detection, individual packets are monitored; if any offending 
file-type of data is detected, those data will be filtered out. In 
another example, firewalls are often setup to detect executable 
files from unknown sources; if such files are detected, they will 
be blocked. In such scenarios, the location of signature bytes 
and the allocation information about file segments are often not 
available. COTS solutions or similar knowledge-engineering 
approaches to FTI would perform poorly. 

Several statistical classification methods have been studied 
to address the limitations of COTS solutions or knowledge-
engineering based approaches. Those methods treat each file 
type as a category (class), and use supervised learning 
techniques to predict the category label for each test instance (a 
file) based on its content and a training set of labeled instances. 
Such approaches are referred to as content-based, in distinction 
from those relying on file-name extensions or file-header 
information alone. Each file is represented using a vector of 
feature weights where the features are typically n-gram bytes, 
the weights are typically the within-file frequency of the 
features [18] or some kind of TF-IDF (term frequency 
multiplied to Inverted Document Frequency) weight (see 
Section 2). Just like in text categorization where word order is 
typically ignored by statistical classifiers, the order of ngram 
bytes is also often ignored by the classifiers in FTI. Of course 
by tuning the value of n for n-gram features, local context can 
be partially captured. Once we have files represented as feature 
vectors, any statistical classification method can in principle be 
applied. Approaches examined so far include centroid-based 
methods [12],[15],[16], [17], [18], [19] where each category is 
represented using the centroid of its member instances in the 
training set, and the category centroids are compared to each 
test instance for inference. Other methods include 1-Nearest 
Neighbor (1-NN) [17], k-Nearest Neighbor (kNN) [2], 3-layer 
neural networks (with PCA-induced features) [4] Support 
Vector Machines (SVM), etc. [2]. 

Although good progress has been made in statistical 
approaches to FTI, general conclusions are difficult to obtain 
with respect to the strengths and weaknesses of different 
methods, and it is not clear which ones are representative for 
the current state of the art. 

1. The lack of evaluation results on shared benchmark 
datasets: All the published results so far were obtained on 
unshared datasets, making it impossible to directly 
compare methods across studies or to replicate published 
results. A realistic data collection, called Realistic Data 
Corpus (RealisticDC) [10], has been recently made 
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publicly available; however, no evaluation result of any 
method has yet been reported on that collection. 

2. The lack of well-established evaluation methodology: 
To our knowledge, no evaluation result was published for 
performance comparison against and among COTS 
solutions. Although COTS predictions are all based on 
signature bytes which can be found in a manually created 
external data base, different software may produce 
different labels for the same file type, or they may divide 
file types into sub-types inconsistently Comparing COTS 
solutions has been difficult due to the lack of 
standardization of file-type (category) labels. On the other 
hand, the evaluations of statistical classifiers for FTI often 
use file-name extensions as the true labels, which is 
contradictory to the common belief that user assigned 
extensions in file names are highly unreliable [12]. This 
contradiction makes it difficult to interpret the reported 
evaluation results for statistical classifiers in FTI. 

3. No cross-method comparative evaluation has been 
reported on damaged files. This is the most crucial issue 
for the security and forensic applications mentioned above. 
The claimed advantage of statistical classification 
approaches over COTS or knowledge based solutions has 
not been empirically examined using any quantitative 
measure. As a result, software developers and forensic 
examiners cannot tell which tools would be best for their 
problems, and researchers in FTI-related fields also face 
difficulties in reaching conclusions regarding the state of 
the art. 

This paper addresses the above key issues by conducting a 
thorough investigation with several representative statistical 
classifiers and COTS solutions, as follows: 

1. We report the first comparative evaluation using controlled 
experiments with statistical classification methods 
(Support Vector Machines and k-Nearest Neighbor 
classifiers) and popular COTS solutions (Libmagic, TrID, 
Outside-In and DROID) on a shared and publicly available 
ReasliticDC dataset. 

2. We propose two strategies for cross-method evaluation. 
The first is to use the labels assigned by a COTS solution 
(e.g. Libmagic) on the intact files as the true labels of test 
instances, and to measure the accuracy of statistical 
classifiers in predicting file types accordingly. The second 
is to use file name extensions as the true labels, and to 
measure the consistency in label assignment by each 
COTS solution accordingly. The former (accuracy) allows 
us to compare statistical classifiers conditioned on the 
choice of software for information extraction (as the next 
step after file type identification). The latter (consistence) 
allows us to compare different COTS solutions without 
subjective unification of software-specific labels. 

3. We use the Realistic Data Corpus (RealisticDC) as the test 
bed, which is recently made publicly available by 
Garfinkel et al [10] for digital forensics research, and we 
provide the first set of empirical results on this corpus. By 
making our detailed documentation and data preparation 

toolkit together accessible, we ensure that future results on 
this dataset can be compared with ours. 

4. Our experiments focus on performance analysis of 
different methods over incomplete files (using files with 
simulated damages and file segments) as well as complete 
files; the latter has been the setting in all previous 
evaluations. Incomplete files are particularly prevalent in 
forensics. We found SVM and kNN outperforming 
Libmagic (among the best of COTS solutions) by a factor 
of 10 in microaveraged F1 , and by a factor of 7.3 to 8.0 in 
macro-averaged F1 (Sections 3.2 and 5). 

5. Our experiments also show that with adequate choice of n 
in n-gram feature generation and statistical feature 
selection, SVM (and kNN) can scale very well to large 
applications without any (significant) sacrifice in accuracy. 

The rest of the paper is organized as follows. Section 2 
outlines our statistical learning framework for classification 
and the feature generation process. Section 3 discusses our 
evaluation methodology. Section 4 describes the experiments 
and data. Section 5 reports our results. Section 6 concludes by 
summarizing our findings. 

II. THE STATISTICAL APPROACH 
In order to apply statistical classification methods to FTI, we 
need a set of features to represent files and to discriminate 
different types from each other. N-gram bytes have been 
found highly useful for FTI in previous work 0[15][19] hence 
we follow the same choice of features. Given a collection of 
files, the feature space is defined as the union of all the unique 
n-gram bytes in the files. Each file is represented as a vector of 
feature weights. Within-file frequency of n-gram bytes is a 
common choice of feature weighting scheme. It is analogous 
to the term frequency (TF) in document retrieval and text 
categorization; hence we call it TF weight for convenience. 
Other popular term-weighting schemes are also possible, such 
as TF-IDF weights where IDF stands for the Inverted 
Document Frequency of a term in a collection of documents. 
Applied to FTI, a ‘document’ means a file, and a ‘term’ means 
an n-gram byte. 
Notice that the value of ‘n’ need to be carefully chosen for 
both classification accuracy and for classifier training and run-
time efficiency. Generally, the larger the value of ‘n’, the more 
byte order information is captured by the features. That is, the 
features could be more discriminative for classification. 
However, a higher value of ‘n’ also means a larger size of the 
feature space (growing exponentially in n), which will cause 
an increased time to train the model and a risk of overfitting 
the training data. Adequate choice of n can found empirically 
through cross-validation, i.e., using some held-out data (not a 
part of the test set) to tune the value of n and then fix the value 
in the testing phase. 
Having the vector representation of files and discriminative 
features, any classification method could be in principle 
applied. We use two of the most popular methods in this 
study: Support Vector Machines (SVM) and k-Nearest 
Neighbors (kNN). Both methods have been highly successful 
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in a broad range of classification applications [14][25][5][27]. 
SVM is formulated as a large-margin method for a geometric 
classification problem: the objective is to find the decision 
surface that best separates two classes of data points (vectors) 
with the maximal margin in between. SVM has been found 
robust in high-dimensional feature spaces and with skewed 
class distributions where many classes have a relative small 
number of labeled instances for training. kNN is radically 
different: it is typical among instance-based (‘lazy’) learning 
methods. It finds the nearest neighbors for each test instance in 
the training set on the fly, and makes inference based on the 
class labels in the local neighborhood. Specifically, our kNN 
uses the cosine similarity as the metric to select the top-k 
training instances for each test instance, and to weight the 
class label of each nearest neighbor; the weights of labels are 
summed over for each class, and the class receives the highest 
score is assigned to the test instance. This kind of kNN is 
called multi-class kNN [5],[27], meaning that the unique class 
labels in each local neighborhood may be more than two. 
Multi-class kNN typically outperforms two-class kNN in 
multi-class or multi-label classification problems; the latter 
converts multi-class labels of training instances into binary 
labels for each class before training a two-way classifier for 
the class. 

III. EVALUATION METHODOLOGY 
It has been more difficult to obtain the true labels of files 

for FTI evaluations, compared to some other domains such as 
text categorization or image pattern recognition where human-
assigned labels to documents or objects can be directly used as 
the true labels for evaluation. In FTI, extensions in file names 
are potentially incorrect or even missing -- that is why COTS 
solutions have been developed for automated FTI. This leads to 
two open questions regarding the evaluation methodology in 
FTI.  

1) How can we get the true labels for evaluation, especially 
for comparing different statistical classifiers in FTI?  

2) File-name extensions are imperfect, but are they still 
useful for cross-method comparison, especially among 
different COTS solutions and between COTS and statistical 
classifiers?  

Our answer for the first question is to use the output of a 
COTS solution on intact files as the true labels, and to compare 
the performance of different statistical classifiers on damaged 
or fragmented files based on those true labels. By using an 
application-specific choice of COTS solution to produce the 
true labels, we avoid the need for manual and subjective 
unification of inconsistent labels from different COTS 
solutions for the same file. For example, given an excel file 
(possibly incomplete or damaged) as the input, some COTS 
solution would label it as ‘Microsoft Excel 2000’ and others 
would label it as ‘Microsoft Office Document’ or ‘Microsoft 
Excel File’. These labels follow different naming conventions, 
and/or provide different levels of detail about the file type. We 
cannot subjectively decide that one convention is better than 
the others, or a certain level of detail is most appropriate in 
general. What level of detail is appropriate depends on the 

next-step application, e.g., on the choice of program to be used 
for information extraction or execution after FTI. Hence, if the 
output labels of a COTS solution are suitable for the next-step 
application, it is sensible to use those labels as the ground truth 
for evaluating statistical classifiers in file-type identification. 

Our answer for the second question is yes. We believe that 
using file extensions as the true labels to evaluate COTS 
solutions is informative. It is reasonable to assume that file 
extensions are more often to be correct than incorrect. If the 
predicted labels by one method agree with file extensions in a 
large test set more often than another method does, then the 
chance for the former method to outperform the latter method 
is higher. Using noisy labels to evaluate the relative 
performance of FTI methods to each other is still informative, 
as long as the test set is sufficiently large. 

For evaluations, we choose to use micro-averaged F1 and 
macro-averaged  F1 as the primary metrics. Both are standard 
and common in benchmark evaluations [26][27][28] for text 
categorization, information filtering, information extraction, 
and so on. We omit the descriptions of these metrics due to the 
lack of space. A thorough description of the metrics can be 
found in [28]. 

IV. EXPERIMENTS 

A. Data 
The RealisticDC dataset was introduced by Garfinkel et al 

[10] to alleviate the problem of lack of a standardized dataset 
for FTC research. The dataset was created under realistic 
situations that mimic the kind of data commonly encountered 
by forensics investigators. An experimenter was hired to play 
the role of a normal computer user, exchanging messages, 
browsing the web, performing office related work, reading 
news etc. The images of the experimenter‘s computer disk then 
were processed and made available as the dataset. By hiring 
individuals to mimic realistic users instead of directly 
collecting data from true users, privacy issues were avoided, 
making the data sharable to the research community. After 
performing our own filtering, such as removing empty files and 
files without extensions, we obtained a total of 31,644 files and 
316 unique file-type extensions, among which 213 are binary 
file-types and 103 are ASCII text file-types. This filtered 
dataset has the size of 7.2 GB in total. Further details of the 
filtering process can be found at http://nyc.lti.cs.cmu.edu/clair/ 
datasets.htm. 

B. Methods for Comparison 
For cross-method comparison we include both state-of-the-

art classifiers and popular COTS solutions. We list these 
methods with a corresponding brief description.  

1. SVM is a state-of-the-art classification method we 
described in Section 2. Specifically, we used the large-
scale linear SVM implementation by Hsieh et al [13] in 
our experiments.  

2. kNN is another state-of-the-art classification method we 
described in Section 2. We used our own implementation 
of kNN [27] in the experiments.  
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3. Libmagic [8] is one of the most popular COTS solutions 
for FTI, which has been implemented as a UNIX 
command line tool. It uses the information about the 
UNIX/Linux system to recognize certain file types (such 
as device files) as the first step; if the first attempt fails, 
then it analyzes the signature bytes of the input file to 
identify the file-type as the second step; if the second 
attempt also fails, then the ASCII content within the file is 
used to identify the file-type. If all the above attempts fail, 
the file-type will be labeled as not recognized. 

4. TrID [22] is another popular COTS solution designed for 
identifying file-types from their signature bytes. TrID uses 
a database of signature patterns. Currently TrID supports 
the identification of 4093 different file-types.  

5. Outside-In [21] is a part of the suite of algorithms 
distributed by Oracle for dealing with unstructured files. It 
uses a proprietary algorithm to identify the file-types 
without entirely relying on the file-extensions. It can 
identify more than 500 file-types.  

6. DROID (Digital Record Object Identification) [20] is an 
opensource file-type identification tool developed by the 
National Archives. Rather than relying on signature bytes 
only, DROID uses regular expressions to allow flexible 
match in signature-based file-type identification.  

For comparing the methods on intact files, we used file-
name extensions as the true labels of the test instances. For 
comparing the methods on damaged files or segments of files, 
we used the output of Libmagic on the undamaged and un-
segmented version of the files as the true labels of the test 
instances. For these experiments, we used the subset of the 
dataset (30,254 files) on which libmagic was able to predict the 
file-types. We also investigated other signature-based COTS 
methods on intact files as the gold-standard, but we omit these 
variations for brevity, since they provide the same basic 
insight.  

C. Simulated Damages and Segments 
We simulate file damage in our experiments as follows: 

Type-0 corresponds to the case where there is no damage. 
It reflects an ideal situation where the files are intact without 
any missing bytes. Also, complete information about file 
segment allocation is available so that we can treat each file as 
a contiguous string of bytes after preprocessing. 

Type-1 corresponds to the case where the signature bytes in 
the file are missing. Generally a hard disk is arranged in the 
form of blocks (clusters) where each block is a contiguous 
sequence of 512 bytes, and each file is stored across different 
blocks. The signature bytes of a file are typically stored in the 
first block assigned to the file. Thus, if the first block is 
damaged, the signature bytes of the file are lost. In order the 
mimic such a situation, we removed the first block from each 
file, that is, the first 512 bytes of the file.  

Type-2 corresponds to the case where additional bytes 
(after the removal of signature bytes) are missing at random 
locations, i.e., the missing bytes are randomly allocated. We 
conducted experiments with the random removal of bytes at 
10%, 20%, …, 90% of each file in the test set. 

Type3 corresponds to the case where files are stored as 
isolated segments instead of a contiguous segment. In order to 
mimic such a scenario, we divided the files into shorter 
segments of specific sizes and conducted experiments using the 
segments for training as well as testing. Sometimes, in practice 
it might not be easy to know the distribution of segments nor 
their labels, so it would be difficult to generate a labeled 
training dataset. In such cases, the alternative strategy would be 
use systems which are trained on complete (un-segmented) 
files. In our experiments for evaluating performance on file 
segment classification, we perform both the types of training, 
i.e., training on segments and training on complete files, 
respectively.  
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Figure 1: Performance of FTI methods on intact files: File 
extensions were used as the true labels in the evaluations 
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Figure 2: Performance of FTI methods on files with type-1 
damages (missing signature bytes): File extensions were used as 
the true labels in the evaluation. 
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Figure 4: Performance of FTI methods on files with type-1 damage 
(signature bytes are missing): The output of Libmagic was used as 
the true labels 

D. Detailed Experimental Setting 
Our results for SVM and kNN are obtained through a five-

fold cross validation process. We divided the full data into five 
subsets: four out of the five subsets were used for training and 
validation (parameter tuning), and the remaining subset was 
used for testing. We repeated this process five times, with a 
different non-overlapping subset for testing each time; the 
results were averaged over the five subsets. In SVM we tuned 
the regularization parameter and in kNN we tuned the number 
(k) of the nearest neighbors. We tried 5 different values for the 
SVM regularization parameter, from .01 to 100; and, we tried 
10 different values for k in kNN, from 1 to 50. As for feature 
weighting in both SVM and kNN, we used a conventional TF-
IDF weighting scheme named ‘ltc’ in information retrieval and 
text categorization [28]. We also varied the value of n in the 
generation of n-gram features, with n = 1, 2 and 3. COTS 
methods have neither a training phase, nor any parameter 
tuning, since they are not based on statistical learning.  

V. RESULTS 
Figure 1 shows the performance of all the methods on intact 

files, including both COTS solutions and the statistical 
classifiers on complete undamaged files. File extensions were 
used as the true labels. During validation, we found kNN with 
1-gram features worked better than kNN with 2-gram features, 
and SVM with 2- gram features worked better than SVM with 
1-gram in terms of classification performance, thus we 
included the better versions of kNN and SVM in the graph. In 
micro-averaged F1, Libmagic is the best method among the 
COTS solutions; however, in macroaveraged F1 , TrID is the 
best among COTS solutions. In both measures, SVM and kNN 
are substantially better than all the COTS solutions being 
tested. This means that statistical classifiers are more 
discriminative with respect to user-specified file types in file-
name extensions. The larger performance improvement in 
macro-averaged F1 by the statistical classifiers over COTS, 
compared to the smaller improvements in micro-averaged F1, 
indicates that COTS predictions tend to agree more with file 
extensions for common file types, and agree less with file 
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Figure 5: Performance curves of statistical classifiers on files with 
type-2 damages: The output of Libmagic was used as true labels  Figure 6: Performance curves of SVM (2-gram) in fragment-
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extensions for rare file types. Figure 2 shows the performance 
of all the methods on files with type-1 damages, i.e., when the 
signature bytes of each test instance are missing. Again, file 
extensions were used as the true labels in this evaluation. 
Comparing to Figure 1, we can see that most COTS solutions 
failed miserably (with the zero or near-zero value in both 
micro-averaged and macro-averaged F1) when the signature 
bytes are missing, while the statistical classifiers suffer much 
less. The statistical classifiers are much more robust in FTI 
with respect to this kind of damage. 

Figure 3 compares the results of our statistical classifiers on 
intact files; the output of Libmagic for each test file was used 
as the true label of that file. We include the performance of 
Libmagic for reference, which has the perfect score (F1 =1) of 
course. We include the results of SVM and kNN with 1-gram 
and 2-gram features, respectively. 

Figure 4 compared the results of these methods on files 
with type-1 damages, i.e., when the first 512 bytes (including 
the signature bytes) of each test file is missing. Libmagic failed 
dramatically in this case, while SVM and kNN are highly 
robust. SVM using 2-gram features works better than SVM 
using 1-gram features, on the other hand, kNN using 1-gram 
features had better results than kNN using 2-gram features. 
SVM and kNN have a comparable performance. In general, the 
statistical learning methods perform better in micro-averaged 
F1 because the common classes have more training instances. 
SVM (2-gram) outperforms Libmagic by a factor of 10.3 
(0.900 vs. 0.088) in micro-averaged F1 and a factor of 8.0 
(0.540 vs. 0.068) in macro-averaged F1 .KNN (1-gram) 
outperforms Libmagic by a factor of 10.0 (0.874 vs. 0.088) in 
micro-averaged F1 and a factor of 7.3 (0.496 vs. 0.068) in 
macro-averaged F1 . Figure 5 compares the performance curves 
for SVM (using 2- gram features) and kNN (using 1-gram 
features) on files with type- 2 damages. A certain percentage of 
each file was removed at random, as well as the first 512 bytes 
from each file. Again, the two methods have similar curves: 
until the damaged proportion reaches 50% or higher, there is 
no significant degradation in classification performance for 
both methods, but kNN is somewhat more robust when most of 
the file is missing. Figure 6 compares the performance curves 
for SVM (using 2- gram features) on segments of files (type-3 
damage). We evaluated the methods with two settings: training 
SVM on segments (of the same size as the test segments), and 
training SVM on the full files. The former setting yielded a 
better performance but it had an unrealistic assumption, i.e., the 
size of the segments in the test set must be known or estimated 
in advance. The latter setting is more realistic. All the curves 
show that the smaller the segments harder the prediction task. 

VI. CONCLUSION 
We conducted the first thorough comparative analysis of 

FTI methods on damaged or fragmentary files, contrasting 
COTS methods and statistical learning ones (SVM and kNN). 
The study found statistical learning methods to be far more 
robust than COTS in all the measures. SVM and kNN 
outperform COTS when the gold standard is set of available 
file extension for intact files. More importantly, SVM and kNN 
far outperform COTS on different types of simulated file 
damages: files with missing signature bytes, files with 

randomly deleted sections, and isolated file segments. These 
tests were conducted on a new realistic publicly available data 
set, encouraging future research and rigorous evaluations. 
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